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Chaos via mixed-mode oscillations

By RaimMma LARTER AND CURTIS G. STEINMETZ

Department of Chemistry, Indiana University — Purdue University at Indianapolis,
1125 E. 38th Street, Indianapolis, Indiana 46205, U.S.A.

The route by which chaos arises from mixed-mode periodic states in a model of the
peroxidase enzyme catalysed oxidation of NADH is described. The specific model
studied displays a rich variety of exotic dynamical behaviour including simple
oscillations, quasiperiodicity, bistability between periodic states, complex periodic
oscillations (including the mixed-mode type) and chaos. The route to chaos in this
system involves a torus attractor which becomes destabilized and breaks up into a
fractal object, a strange attractor. The mixed-mode states correspond to phase-
locking on this fractal attractor and are arranged in staircases according to the
complexity of the state. In this paper, we investigate the sequence leading from a
mixed-mode periodic state to a chaotic one in the staircase region and find a familiar
cascade of period-doubling bifurcations, which finally culminate in chaos.
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1. Introduction

Chaos is one of the more exotic of the exotic phenomena displayed by nonlinear
systems. It is likely that examples of chaos are widespread in homogeneous chemical
kinetics, but only two such examples have been extensively studied. In this paper we
describe one of these examples, the chaotic behaviour observed (Olsen & Degn 1977)
during the horseradish peroxidase enzyme-catalysed oxidation of nicotinamide
adenine dinucleotide (NADH), a common biochemical substrate. The second well-
studied example of chemical chaos is the acid-catalysed bromination of a carboxylic
acid, which has come to be known as the Belousov—Zhabotinskii (BZ) reaction, after
its discoverers (see Field & Burger 1985 for leading references). Other occurrences of
chemical chaos are known, but most have not been as extensively studied as these
two examples.

The study of chaotic behaviour often involves determining the ‘route to chaos’,
i.e. the ordered sequence of time-dependent states that arise as a control parameter
is varied through a set of critical, or bifurcation, values. This sequence of states can
involve only periodic states or both periodic and quasiperiodic states, before the
aperiodic behaviour known as chaos arises. The ‘chaotic’ state (a misnomer in some
sense) is actually quite ordered, and retains some characteristics of the periodic states
from which it arises. Studying the route to chaos in a particular system has proven
to be a valuable approach to unravelling the mechanism which underlies the chaotic
behaviour. Also, it can be very difficult to distinguish between highly complex, yet
periodic, states on the one hand, and chaotic states on the other. Demonstrating that
a suspected chaotic state is associated with a known route to chaos is important
evidence that the state is, indeed, chaotic.

In a recent paper (Steinmetz & Larter 1991), we described the transition to chaos
which occurs in a simple four-variable model of the peroxidase oscillating reaction
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Figure 1. Phase-locked and mixed-mode oscillations. The values of k, are: (a) 0.193762205, (b)
0.1621, and (¢) 0.1033 (this is the 515 state discussed elsewhere). The surfaces of section in (d),
(e) and (f) correspond to the time series in (@), (b) and (c) respectively. The dashed lines in (¢) show
the gap between the largest small oscillation and the smallest large oscillation. This gap is about
the size of the small oscillations themselves. There is no such gap in (a) and (b). The other
parameters (other than k,) are: k, = 1250, k, = 0.046875, k, = 20, k; = 1.104, ky = 0.001, k, =
0.89, k_, = 0.1175, and kg = 0.5. Throughout this paper these are the values used for all parameters
other than k,.

(Degn et al. 1979). Chaos becomes possible in this system when a two-dimensional
torus attractor (a 2 torus) becomes unstable, being replaced by a fractal torus
attractor. The fractal nature of this attractor is found to become more highly
developed as the chaotic region is penetrated until the fractal torus finally breaks up,
forming a banded structure called a broken torus. The broken torus can support
mixed-mode oscillations as well as chaotic states. The former are complex periodic
states in which a clear distinction can be made between large-amplitude peaks and
small-amplitude peaks. These are found to be arranged in staircases according to the
number of large-amplitude peaks in each cycle of the oscillation. Within each
staircase the steps are arranged according to a Farey sequence. Chaotic states are
found to occur between the steps of the staircase. The sequence of changes in the
torus attractor found to occur in this system along its route to chaos are similar to
those found in the BZ reaction as well as in other chaotic systems.

It is the purpose of this paper to describe in more detail the sequence by which
chaos arises out of the mixed-mode oscillations, i.e. the ‘route to chaos’ from mixed-
mode states. Briefly, we find a familiar cascade of period-doubling bifurcations
(Devaney 1989; Schuster 1988) leading from the mixed-mode oscillations into
chaotic states within the broken torus region. The period-doubling route is well
known from extensive studies of iterated maps such as the logistic map and has been
observed in different types of experimental systems as well. This study reports the
first example in which the route to chaos from mixed-mode oscillations has been
determined. It is hoped that our extensive study of this simple model system will
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Chaos via mixed-mode oscillations 293

encourage other investigators to look for similar behaviour in other experimental
systems displaying mixed-mode oscillations.

2. The model

In the peroxidase—oxidase reaction a peroxidase enzyme (which, as its name
implies, normally utilizes hydrogen peroxide as the electron acceptor) catalyses an
aerobic oxidation:

2YH,+0,+2H*"->2YH*+2H,0,

where YH, is a general electron donor. In the most widely studied version of this
reaction ¢n vitro (the peroxidase—oxidase reaction is also thought to occur in vivo in
plants (Pantoja & Willmer 1988)) YH, is NADH and the enzyme is horseradish
peroxidase. After the discovery (Yamazaki et al. 1965) of damped oscillations in the
concentrations of O, and NADH during the course of this reaction, the reaction was
studied in an open system and sustained oscillations were found (Nakamura et al.
1969). It was also found (Olsen 1981) that by decreasing the enzyme concentration
one could observe three distinct oscillatory modes: (a) high-frequency simple
oscillations with a single amplitude; (b) chaotic oscillations consisting of mixtures of
amplitudes with no repeating pattern; and (c) low-frequency bursting oscillations.
Various models of the peroxidase—oxidase reaction have been proposed (see Aguda
& Larter 1990 for a review), some quite detailed and some with as few as four
variables. The earliest four variable model is the Degn, Olsen and Perram (DOP)
model (Degn et al. 1979), which consists of the following eight step mechanism :

ky Ky kg ky
A+B+X>2X, 2X>2Y, A+B+Y~>2X, X>P
(1)

ey g iy kg
Y-Q, X,~X, Ay)=A, B,~B,
k—7

where A is dissolved O,, B is NADH and X and Y are intermediates. In a recent
report, we have proposed (Aguda & Larter 1990) that X may correspond to NAD’
radical and Y to compound III (a radical form of the enzyme). The first step in the
above mechanism is the autocatalytic production of X. The second step is a
branching step in which X is converted to Y, and in the third step one Y is converted
to 2 Xs. Steps 2 and 3 together constitute a second route for the autocatalytic
production of X, and these two routes are coupled by step 2. Steps 4 and 5 are
termination steps for X and Y, while step 6 is the spontaneous generation of X. Steps
4, 5 and 6 are consistent with the hypothesis that X and Y are free radicals. Step 7
is the equilibration of gaseous O, with the liquid phase, and step 8 is the slow
constant inflow of NADH. In the experimental system, no outlet exists and any
volume change which oceurs is very small, so step 8 is taken to be irreversible. From
this mechanism we can use the laws of mass action kinetics to derive the following
system of four coupled nonlinear differential rate equations:

A=—IyABX—kyABY +k,—k_, A, (2a)
B =—k,ABX —k, ABY + kg, (2b)
X = Iy ABX — 2k, X2+ 2ky ABY —k, X + kg, (2¢)
Y =—lk,ABY + 2k, X?— £, Y. (2d)

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. The four stages of the torus: (a) the undistorted torus, (b) the wrinkled torus, (c) the
fractal torus, and (d) the broken torus. The values of &, are (a) 0.205, (b) 0.17, (c) 0.1634 and (d)
0.1178; other parameters are as given in figure 1. The Poincaré sections in figures 1 and 2 were
generated by taking the intersections of the trajectory with the plane ¥ = Y'* (the Y value of the
unstable steady state); this plane cuts through the hole of the torus.

Although highly simplified, the DOP model is able to reproduce the three modes
of simple, chaotic and bursting oscillations (Larter et al. 1987, 1988) found in
experiments as the enzyme concentration is decreased. This sequence is observed in
calculations with equations (2) when k, is decreased; k, is, thus, thought to be
directly related to the enzyme concentration. In addition to the three types of
experimentally observed oscillations the DOP model is also known to display
complex periodic oscillations with repeating patterns of large and small amplitude
peaks (see figure 1). It is these latter ‘mixed-mode’ states, which are our main
concern in this paper.

3. The transition to chaos

As explained in more detail in a previous paper (Steinmetz & Larter 1991), the
chaotic dynamics in the DOP model are governed by a torus which evolves through
four distinct stages as the parameter k£, is varied. These four stages are: (i) the
undistorted torus; (ii) the wrinkled torus; (iii) the fractal torus; and (iv) the broken
torus. The time series and surfaces of section shown in figure 1 correspond to phase-
locked states on the wrinkled torus (parts @, b, d and ¢) and on the broken torus (parts
¢ and f). The latter is an example of a mixed-mode oscillation, in which a clear
distinction is possible between large-amplitude peaks and small-amplitude peaks.
Figure 2 is reproduced from our earlier paper (Steinmetz & Larter 1991) and shows
the Poincaré sections of the torus in each of its four stages. The transition from stage
(ii), figure 2b, to stage (iii), figure 2¢, occurs when a horizontal inflection point
develops in the circle map associated with the section. It is known that a 2 torus must
have a circle map that is invertible, i.e. it must be monotonic. So, the development
of such an inflection point in the circle map heralds the death of the 2 torus.
However, the 2 torus is immediately reborn as a fractal torus, a strange attractor
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Figure 3. Staircase formed by the rotation numbers of mixed-mode states with five large
oscillations (the ‘5-sequence’). For a mixed-mode oscillation of the form (L5)™(L®*D)" the rotation
number is given by p = (m+n)/[m(L+8)+n(L+8+1)]. Note that this formula is completely
equivalent to the one used by Richetti et al. (1987) (see their equation 26). The primary states
(unconcatenated) and secondary states (only one concatenation) are labelled, while the tertiary
states (two or more concatenations) are shown but not labelled. Notice the absence of tertiary
states to the right of the secondary states (55! and 5'25'*). When comparing this figure with fig.
8d in Steinmetz & Larter (1991) note that here the abscissa is &, rather than k7, thus the staircase
goes up (from left to right) instead of down. Also note that the state we call 515! here is the same
as that labelled 55" in Steinmetz & Larter (1991), the difference in labelling being due to the
different orientations of the staircase with respect to k, and k;.

that can support chaotic as well as periodic dynamics. This bifurcation also
corresponds to a distinct change in the nature of the rotation number. The rotation
number is defined by the following limit:

O(i+n)—06(7)

2nn ’ (3)

p = lim

n—>o0

where 6(i) is the angle at which the ith point appears in the Poincaré section. On a
2 torus this limit is always well defined. For a strange attractor, the limit can be
undefined in one of two senses: (a) either the limit does not converge at all; or (b) it
is dependent upon initial conditions. The first case corresponds to chaos while the
second yields bistability. The limit is not always undefined in this region, however;
in some intervals within this region, there is a single periodic attractor associated
with a well-defined rotation number. Hence, the development of a horizontal
inflection point in the circle map signals a global transition to the region in which
chaos is now a possibility, but other non-chaotic states occur in this region as well.
While the fractal torus is difficult to distinguish from the wrinkled torus, the
broken torus (stage (iv)) is immediately recognizable from its surface of section. Once
the transition from fractal torus to broken torus occurs (iii to iv), we immediately see
the appearance of mixed-mode oscillations. The mixed-mode states can be grouped
according to the number of large oscillations in a given state. The rotation numbers
of the states with a given number of large oscillations form a monotonically
increasing sequence (see figure 3), which we have called an L-sequence (where L is the
number of large oscillations). Within each L-sequence, there are relatively small
intervals of hysteresis over which two oscillatory states coexist. In figure 3, the steps
corresponding to 5 and 5''5' overlap, resulting in an interval of hysteresis, i.e.
bistability, between 5 and 55, Another region of hysteresis is found between 5'?
and 5!25'. The L-sequences also overlap each other, so that significantly larger

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. Bifurcation diagram. (a) In this diagram k£, goes from 0.10393 to 0.1041. The periodic
state to the left of the chaotic region is the 5''5° state (shown in figure 1¢), and it undergoes a
cascade of period doubling bifurcations into the chaotic region. The periodic state on the right is
the 51151951 state (shown in figure 4) which undergoes a sudden bifurcation to chaos reminiscent
of a crisis associated with type I intermittency (as discussed in the text). (b) This is a close up of
part (@) in which a horizontal strip has been expanded (compare the ordinate ranges of the two
plots).

intervals of hysteresis also exist in which states with different numbers of large
oscillations coexist.

Within a given L sequence chaotic states alternate with mixed-mode states in a
manner similar to that seen experimentally in the BZ reaction and other systems.
Between the 5'° and 5''5'° states shown in figure 3, a small staircase consisting of
highly complex mixed-mode states of the form 5'*(5'°)", where n is an integer, can be
found alternating with chaotic states. Figure 4 shows a bifurcation diagram
corresponding to a small interval between 5''5' and 5''5'°5'°. The bifurcation
diagram is constructed by plotting the value of one of the concentration variables (A)
in the Poincaré section as a function of the bifurcation parameter k,. The 5151 state
can be seen to go through a series of period-doubling bifurcations before the chaotic
state finally appears. At the other end of the chaotic region, the 51515 state
abruptly appears, with no evidence of a reverse period-doubling cascade. Figure 5
shows a three-dimensional phase portrait of the 5151951 state, illustrating that the
mixed-mode states are, indeed, phase-locked trajectories on a broken torus.

The abrupt transition from chaos to the 515151 state may be an example of a
‘crisis ” in which the strange attractor collides with its basin boundary and the system

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 5. Three-dimensional phase portrait for the 51551 state, with k, = 0.1041 (since the
system is four dimensional, this is, in fact, a projection out of 4-space).

moves to a coexisting limit cycle attractor. A tangent bifurcation may be responsible
for this ‘crisis’ and is often associated with Type I intermittency (Schuster 1988). In
a tangent bifurcation, the one-dimensional map associated with the limit cycle
approaches very close to, eventually becoming tangent to, the identity line. We find
that the above sequence appears to be common throughout the mixed-mode region :
the transition to chaos from mixed-mode oscillations is characterized by a cascade of
period-doubling bifurcations; at the other end of the chaotic interval the chaos is
abruptly replaced by a new mixed-mode state.

4. Conclusions

Five distinct bifurcations are encountered along the route to chaos in the DOP
model of the peroxidase reaction: (a) a Hopf bifurcation leading from steady state to
simple periodic oscillations; (b) a secondary Hopf bifurcation leading from simple
limit cycle behaviour to quasiperiodicity ; (c) the bifurcation of the 2 torus to a fractal
torus via loss of invertibility in the associated circle map; (d) the destabilization of
periodic states on the fractal or broken torus via a cascade of period doubling
bifurcations; and (e) a tangent bifurcation leading from the strange attractor to a
new mixed-mode state. The third bifurcation characterizes the global nature of the
transition to a region in parameter space in which chaos is possible. The fourth and
fifth bifurcations occur many times throughout the region in which the broken torus
exists and characterize the local nature of the transition to chaos in the DOP system.

Mixed-mode oscillations have been found experimentally in the BZ reaction
(Argoul et al. 1987; Maselko & Swinney 1986), other chemical oscillators (Orbdn &
Epstein 1982) and the electrodissolution of copper (Albahadily et al. 1989), as well as
in models of the BZ reaction (Richetti et al. 1987; Barkley 1988). Also,
quasiperiodicity has been found experimentally in the BZ reaction (Argoul et al.
1987; Roux & Rossi 1984) and the electrodissolution of copper (Albahadily et al.
1989 ; Basset & Hudson 1989), and in models of the BZ reaction (Barkley et al. 1987;
Barkley 1988). All of this suggests that the route to chaos found in the DOP model

Phil. Trans. R. Soc. Lond. A (1991)
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could have application to other reactions and may constitute a universal route to
chaos for chemical oscillators. This route involves both of the best-understood
pathways which lead to chaotic behaviour: (i) the quasiperiodic route involving
wrinkling and breakup of a torus; and (ii) the route involving a cascade of period-
doubling bifurcations. The former sets the stage for the possibility of chaos, while the
latter shows how phase-locked states on the broken torus can become destabilized,
giving rise to the actual observation of chaos.
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